A Corpus-Based Relevance Feedback Approach to Cross-Language Image Retrieval

نویسندگان

  • Yih-Chen Chang
  • Wen-Cheng Lin
  • Hsin-Hsi Chen
چکیده

This paper regards images with captions as a cross-media parallel corpus, and presents a corpus-based relevance feedback approach to combine the results of visual and textual runs. Experimental results show that this approach performs well. Comparing with the mean average precision (MAP) of the initial visual retrieval, the MAP is increased from 8.29% to 34.25% after relevance feedback from cross-media parallel corpus. The MAP of cross-lingual image retrieval is increased from 23.99% to 39.77% if combining the results of textual run and visual run with relevance feedback. Besides, the monolingual experiments also show the consistent effects of this approach. The MAP of monolingual retrieval is improved from 39.52% to 50.53% when merging the results of the text and image queries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

Structured queries, language modeling, and relevance modeling in cross-language information retrieval

Two probabilistic approaches to cross-lingual retrieval are in wide use today, those based on probabilistic models of relevance, as exemplified by INQUERY, and those based on language modeling. INQUERY, as a query net model, allows the easy incorporation of query operators, including a synonym operator, which has proven to be extremely useful in cross-language information retrieval (CLIR), in a...

متن کامل

Cross-Language Pseudo-Relevance Feedback Techniques for Informal Text

Previous work has shown that pseudo relevance feedback (PRF) can be effective for cross-lingual information retrieval (CLIR). This research was primarily based on corpora such as news articles that are written using relatively formal language. In this paper, we revisit the problem of CLIR with a focus on the problems that arise with informal text, such as blogs and forums. To address the proble...

متن کامل

Semiautomatic Image Retrieval Using the High Level Semantic Labels

Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005